

Data sheet acquired from Harris Semiconductor SCHS106B – Revised July 2003

CMOS Presettable Up/Down Counters (Dual Clock With Reset)

High-Voltage Types (20-Volt Rating) CD40192 — BCD Type CD40193 — Binary Type

Down Counter and the CD40193B Presettable Binary Up/Down Counter each consist of 4 synchronously clocked, gated "D" type flip-flops connected as a counter. The inputs consist of 4 individual jam lines, a PRESET ENABLE control, individual CLOCK UP and CLOCK DOWN signals and a master RESET. Four buffered Q signal outputs as well as CARRY and BORROW outputs for multiple-stage counting schemes are provided.

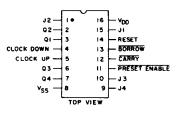
The counter is cleared so that all outputs are in a low state by a high on the RE-SET line. A RESET is accomplished asynchronously with the clock. Each output is individually programmable asynchronously with the clock to the level on the corresponding jam input when the PRESET ENABLE control is low.

The counter counts up one count on the positive clock edge of the CLOCK UP signal provided the CLOCK DOWN line is high. The counter counts down one count on the positive clock edge of the CLOCK DOWN signal provided the CLOCK UP line is high.

The CARRY and BORROW signals are high when the counter is counting up or down. The CARRY signal goes low one-half clock cycle after the counter reaches its maximum count in the count-up mode. The BORROW signal goes low one-half clock cycle after the counter reaches its minimum count in the count-down mode. Cascading of multiple packages is easily accomplished without the need for additional external circuitry by tying the BORROW and CARRY outputs to the CLOCK DOWN and CLOCK UP inputs, respectively, of the succeeding counter package.

The CD40192B and CD40193B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

CD40192B, CD40193B Types


Features:

- Individual clock lines for counting up or counting down
- Synchronous high-speed carry and borrow propagation delays for cascading
- Asynchronous reset and preset capability
- Medium-speed operation—f_{CL} = 8 MHz (typ.) @ 10 V
- 5-V, 10-V, and 15-V parametric ratings
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 μA at 18 V over full package temperature range; 100 nA at 18 V and 25°C
- Noise margin over full package temperature range:

1 V at V_{DD} = 5 V 2 V at V_{DD} = 10 V 2.5 V at V_{DD} = 15 V

Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

PRESET II 3 01 J2 1 2 02 J3 10 6 03 7 04 CLOCK UP 5 13 6000000 CLOCK DOWN 4 12 CARRY RESET VDD 16 VSS = 8 CD401928, CD401938 FUNCTIONAL DIAGRAM

9205-27564#2

CD40192B, CD40193B TERMINAL ASSIGNMENT

Applications:

- Up/down difference counting
- Multistage ripple counting
- Synchronous frequency dividers
- A/D and D/A conversion
- Programmable binary or BCD counting

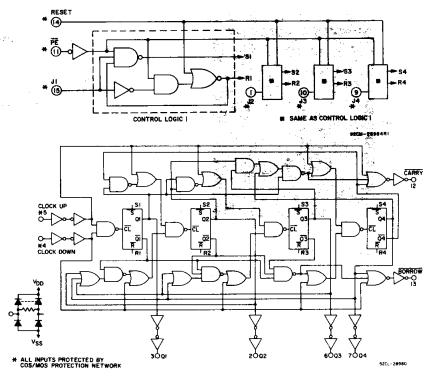


Fig. 1 — CD401928 logic diagram (BCD).

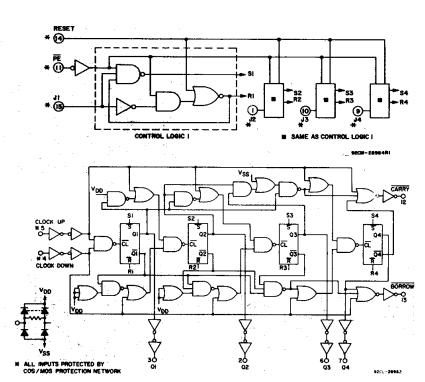


Fig. 2 — CD40193B logic diagram (binary).

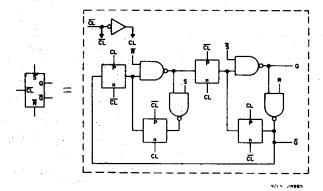


Fig. 4 — Internal logic of Flip-flop.

TRUTH TABLE

	CLOCK UP	CLOCK DOWN	PRESET ENABLE	RESET	ACTION
4		1	1	0	COUNT UP
	~	1	1	0	NO COUNT
1	1	_		0	COUNT DOWN
	1	7	1	0	NO COUNT
-	X	X	0	0	PRESET
ı	X	X	×	1	RESET

1 = HIGH LEVEL

0 = LOW LEVEL

X = DON'T CARE

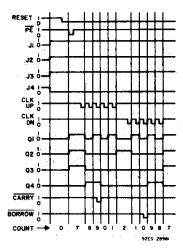


Fig. 3 - CD40192B timing diagram.

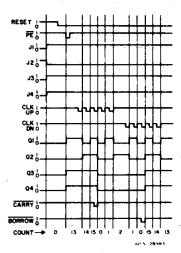


Fig. 5 — CD40193B timing diagram.

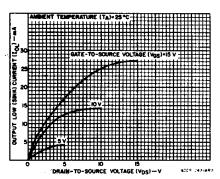


Fig. 6 — Typical output low (sink) current characteristics.

MAXIMUM RATINGS, Absolute-Maximum Values	s:
DC SUPPLY-VOLTAGE RANGE, (VDD)	e e e e e e e e e e e e e e e e e e e
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS	0.5V to V _{DD} +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (Pn):	***
For T _A = -55°C to +100°C	500mW
For TA = +100°C to +125°C	Derate Linearity at 12mW/OC to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSIST	
FOR TA = FULL PACKAGE-TEMPERATURE RA	ANGE (All Package Types)100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (Tstg)	
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) fr	rom case for 10s max +265°C

RECOMMENDED OPERATING CONDITIONS at $T_A = 25^{\circ}$ C (unless otherwise specified)

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges.

CHARACTERISTIC	V _{DD}	LIM	ITS	UNITS
	(V)	Min.	Max.	
Supply Voltage Range (For T _A = Full Temp. Range)	_	3	18	٧
Paracual Times	5	80	: -	
Removal Time: RESET or PE	10	40	i –	กร
RESET OF PE	15	30		it is gas in
Pulse Width:	5	480	_	
RESET	10	300		ns
RESET	15	260		
	5	240	_	
PE	10	170	<u> </u>	ns
	15	140	-	
	5	180	_	
CLOCK	10	90		ns
	15	60	<u> </u>	} ·
· Arrivanta de la companya de la com	5		2	
Clock Input Frequency Process	10	DC	4	MHz
6 (str	15	l	5.5	
	5	_ :	15	
Clock Rise & Fall Time	10		15	μs
the state of the s	15	:	5	

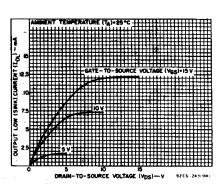


Fig. 7 — Minimum output low (sink) current characteristics.

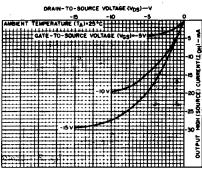


Fig. 8 — Typical output high (source) ******
current characteristics.

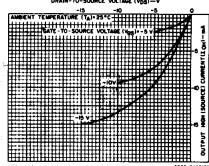


Fig. 9 — Minimum output high (source) **cs-t**si current characteristics.

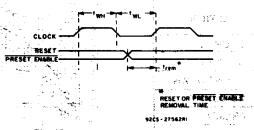


Fig. 10 — Timing diagram defining t_{rem}.

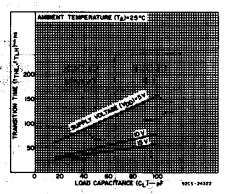


Fig. 11 — Typical transition time as a function of load capacitance.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONE	HTION	is	LIMITS AT INDICATED TEMPERATURES (°C)							
ISTIC	Vo	VIN	VDD						+25		UNITS
-	(S)	()	(V)	-55	-40	+85	+125	Min.	Typ.	Max.	
Quiescent Device		0,5	5	5	5	150	150	- ·	0.04	5	
Current,	-	0,10	10	10	10	300	300		0.04	10	
IDD Max.	-	0,15	15	20	20	600	600	-	0.04	20	μΑ
*	-	0,20	20	100	100	3000	3000	-	0.08	100	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	ī	_	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	34	6.8	-	7
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1	-	mA
(Source)	2.5	0,5	5	-2	-1.8	-1.3	-1,15	-1.6	-3.2	<u> </u>	
Current, IOH Min.	9.5	0,10	10	-1.6	-1.5	-1.1	-0.9	-1.3	-2.6	-	
TOH WIII.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:		0,5	5	0.05				-	0	0.05	
Low-Level, VOL Max.		0,10	10		0.05			_	0	0.05	, j
VOL Wax.	-	0,15	15		0	.05		. =	0	0.05]v.
Output Voltage:	_	0,5	5		4	.95		4.95	5		
High-Level,	_	0,10	10		9	.95		9.95	10	-	
VOH Min.	-	0,15	15		14	.95		14.95	15	-	
Input Low	0.5, 4.5	. –	5		1	.5			-	1.5	-
Voltage,	1, 9	-	10			3		-		3	
VIL Max.	1.5,13.5	_	15			4		-	_	4	
Input High	0.5, 4.5	-	5		- 3	8.5		3.5	_	-	V
Voltage,	1, 9		.10			7		7		-	,]
VIH Min.	1,5,13.5	-	15			11		11	-	_	
Input Current	-	0,18	18	±0.1	±0.1	±1	±1	_	±10 ⁻⁵	±0.1	μА

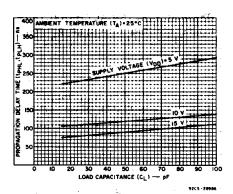


Fig. 12 — Typical propagation delay time as a function of load capacitance.

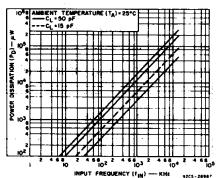
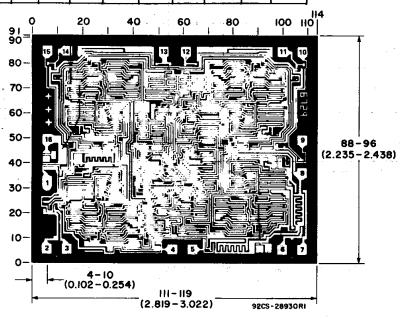



Fig. 13 - Dynamic power dissipation.

Dimensions and pad layout for the CD401928H (dimensions and pad layout for the CD401938H are identical).

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils $(10^{-3} \, \text{inch})$.

DYNAMIC ELECTRICAL CHARACTERISTICS at T $_A$ = 25°C Input t $_r$, t $_f$ = 20 ns, C $_L$ = 50 pF, R $_L$ = 200 k Ω

CHARACTERISTIC	V _{DD}		UNITS					
		(V)	Min.	Тур.	Max.			
Propagation Delay Time tpHL, tpLH:		5	-	250	500 240			
CLOCK UP or CLOCK DOWN to Q. RESET	OCK UP or CLOCK DOWN to Q, RESET to Q							
	· · · · · · · · · · · · · · · · · · ·	15		90	180			
		5	-	200	400			
PE to Q		10	-	100	200	ns		
		15	<u> </u>	70	140			
CLOCK LIBAT CARRY CLOCK DOWN TO	ND DOW	5 10	- -	160 80	320 160	ns		
CLOCK OP to CARRY, CLOCK DOWN to Be	CLOCK UP to CARRY, CLOCK DOWN to BORROW							
RESET or PE to BORROW or CARRY		5	-	300	600			
RESET OF FE TO BORNOW OF CARRY		10 15	_	150 110	300 220	ns		
		<u> </u>		-				
Transition Time, t _{THL} , t _{TLH}		5 10		100 50	200 100			
THE THE		15	-	40	80	ns		
		5		40	80			
Min. Removal Time, t _{rem} * RESET or PE		10	_	20	40	ns		
rem		15	l :	15	30	""		
		5	<u> </u>	240	480			
Min. Pulse Width, tw RESET		10		150	300	ns		
• • • • • • • • • • • • • • • • • • •		15	_	130	260			
		5	_	120	240			
PE		10	-	85	170	ns		
		15	_	70	140			
		5	1	90	180			
CLOCK		10	- '	45	90	ns		
		15	_	30	60			
		. 5	2	4	-			
Max. Clock Input Frequency, fCL		10	4	8	-	MHz		
		_	5.5	1.1				
Claste Biss 9: Falt Times		5	-	- 15				
Clock Rise & Fall Time, t _r , t _f	S. Switz	10 15	_	. –	15 5	μs		
Innut Considerate C	3 T	19			-			
Input Capacitance, C _{IN} : RESET				١,,	15			
	***			10	15	p₹		
All Other Inputs				5	7.5	ρF		

^{*} The time required for RESET or PRESET ENABLE control to be removed before clocking (see timing diagram, Fig. 10.

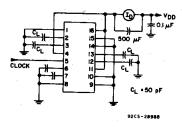


Fig. 14 - Dynamic power dissipation test circuit.

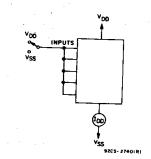


Fig. 15 - Quiescent-device-current test circuit.

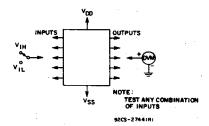


Fig. 16 - Input-voltage test circuit.

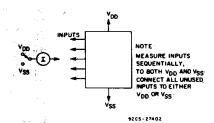


Fig. 17 - Input current test circuit.

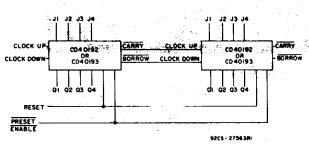


Fig. 18 - Cascaded counter packages.

10-Jun-2014

PACKAGING INFORMATION

Orderable Device	Status	Package Type	_	Pins	U	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)	(6)	(3)		(4/5)	
CD40192BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40192BE	Samples
CD40192BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40192BE	Samples
CD40192BF	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD40192BF	Samples
CD40192BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD40192BF3A	Samples
CD40192BNSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40192B	Samples
CD40193BE	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40193BE	Samples
CD40193BEE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	-55 to 125	CD40193BE	Samples
CD40193BF3A	ACTIVE	CDIP	J	16	1	TBD	A42	N / A for Pkg Type	-55 to 125	CD40193BF3A	Samples
CD40193BNSR	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40193B	Samples
CD40193BNSRE4	ACTIVE	so	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CD40193B	Samples
CD40193BPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0193B	Samples
CD40193BPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	-55 to 125	CM0193B	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

10-Jun-2014

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight

- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

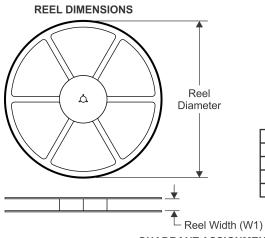
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF CD40192B, CD40192B-MIL, CD40193B, CD40193B-MIL:

Catalog: CD40192B, CD40193B

in homogeneous material)

Military: CD40192B-MIL, CD40193B-MIL


NOTE: Qualified Version Definitions:

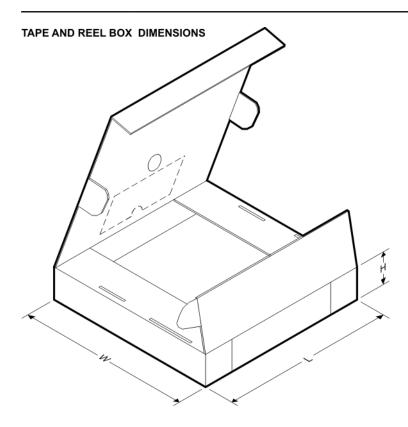
- Catalog TI's standard catalog product
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CD40193BNSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1
CD40193BPWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

www.ti.com 8-Apr-2013

*All dimensions are nominal

Device	Package Type	e Type Package Drawing		SPQ	Length (mm)	Width (mm)	Height (mm)
CD40193BNSR	SO	NS	16	2000	367.0	367.0	38.0
CD40193BPWR	TSSOP	PW	16	2000	367.0	367.0	35.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity