

LM725

Operational Amplifier

General Description

The LM725/LM725A/LM725C are operational amplifiers featuring superior performance in applications where low noise, low drift, and accurate closed-loop gain are required. With high common mode rejection and offset null capability, it is especially suited for low level instrumentation applications over a wide supply voltage range.

The LM725A has tightened electrical performance with higher input accuracy and like the LM725, is guaranteed over a -55°C to +125°C temperature range. The LM725C has slightly relaxed specifications and has its performance guaranteed over a 0°C to 70°C temperature range.

Features

- High open loop gain 3,000,000
- Low input voltage drift 0.6 µV/°C
- High common mode rejection 120 dB
- Low input noise current 0.15 pA/√Hz
- Low input offset current 2 nA
- High input voltage range ±14V
- Wide power supply range ±3V to ±22V
- Offset null capability
- Output short circuit protection

Connection Diagrams

Metal Can Package

Order Number LM725H/883, LM725CH or LM725AH/883 See NS Package Number H08C

Dual-In-Line Package

Order Number LM725CN See NS Package Number N08E

Typical Applications

Thermocouple Amplifier

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage ±22V
Internal Power Dissipation (Note 2) 500 mW
Differential Input Voltage ±5V
Input Voltage (Note 3) ±22V
Storage Temperature Range -65°C to +150°C

Lead Temperature(Soldering, 10 Sec.) 260° CMaximum Junction Temperature 150° COperating Temperature Range $T_{A(MIN)}$ $T_{A(MAX)}$ LM725 -55° Cto $+125^{\circ}$ CLM725A -55° Cto $+125^{\circ}$ CLM725C 0° Cto $+70^{\circ}$ C

Electrical Characteristics (Note 4)

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			LM725A			LM725			LM725C			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Units
$ \begin{array}{ c c c c c } \hline \text{Input Offset Current} & T_A = 25^\circ C & 2.0 & 5.0 & 2.0 & 20 & 2.0 & 35 \\ \hline \text{Input Bias Current} & T_A = 25^\circ C & 42 & 80 & 42 & 100 & 42 & 125 \\ \hline \text{Input Noise Voltage} & T_A = 25^\circ C & 5.0 & 5.0 & 2.0 & 2.0 & 2.0 & 35 \\ \hline \text{Input Noise Voltage} & T_A = 25^\circ C & 5.0 & 5.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 & 2.0 \\ \hline f_o = 10 \text{ Hz} & 5.0 & 5.0 & 9.0 & 9.0 & 9.0 & 9.0 & 9.0 & 9.0 \\ \hline f_o = 10 \text{ Hz} & 9.0$	Input Offset Voltage	$T_A = 25^{\circ}C$,			0.5		0.5	1.0		0.5	2.5	mV
$ \begin{array}{ c c c c c c c c }\hline & Input Bias Current & T_A = 25^{\circ}C & 42 & 80 & 42 & 100 & 42 & 125 \\\hline Input Noise Voltage & T_A = 25^{\circ}C & & & & & & & & & & & & & & & & & & &$	(Without External Trim)	$R_S \le 10 \text{ k}\Omega$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Offset Current	$T_A = 25^{\circ}C$		2.0	5.0		2.0	20		2.0	35	nA
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Bias Current	$T_A = 25^{\circ}C$		42	80		42	100		42	125	nA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Noise Voltage	$T_A = 25^{\circ}C$										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		f _o = 10 Hz		15			15			15		nV/√ Hz
$ \begin{array}{ c c c c c c c c }\hline & Input Noise Current & $T_A=25^{\circ}C$ & $f_o=10~Hz$ & 1.0 & 1.0 & 1.0 & 1.0 & 0.3 & 0.15 $		f _o = 100 Hz		9.0			9.0			9.0		nV/√ Hz
$ \begin{array}{ c c c c c c c c }\hline & Input Noise Current & $T_A=25^{\circ}C$ & $f_o=10~Hz$ & 1.0 & 1.0 & 1.0 & 1.0 & 0.3 & 0.15 $		f _o = 1 kHz		8.0			8.0			8.0		nV/√ Hz
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Noise Current											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				1.0			1.0			1.0		pA/√ Hz
$ \begin{array}{ c c c c c c c }\hline & Input Resistance & T_A = 25^{\circ}C & 1.5 & 1.5 & 1.5 & 1.5 \\ \hline & Input Voltage Range & T_A = 25^{\circ}C & \pm 13.5 & \pm 14 & \pm 13.5 & \pm 14 & \pm 13.5 & \pm 14 \\ \hline & Large Signal Voltage Gain & T_A = 25^{\circ}C, & R_L \ge 2 k\Omega, & 1000 & 3000 & 1000 & 3000 & 250 & 3000 \\ \hline & V_{OUT} = \pm 10V & & & & & & & & & & & & & & & & & & &$		f _o = 100 Hz		0.3			0.3			0.3		pA/√ Hz
$ \begin{array}{ c c c c c c c }\hline & Input Resistance & T_A = 25^{\circ}C & 1.5 & 1.5 & 1.5 & 1.5 \\ \hline & Input Voltage Range & T_A = 25^{\circ}C & \pm 13.5 & \pm 14 & \pm 13.5 & \pm 14 & \pm 13.5 & \pm 14 \\ \hline & Large Signal Voltage Gain & T_A = 25^{\circ}C, & R_L \ge 2 k\Omega, & 1000 & 3000 & 1000 & 3000 & 250 & 3000 \\ \hline & V_{OUT} = \pm 10V & & & & & & & & & & & & & & & & & & &$		$f_o = 1 \text{ kHz}$		0.15			0.15			0.15		pA/√ Hz
$ \begin{array}{ c c c c c c c } \hline Large Signal Voltage Gain & $T_A = 25^{\circ}C$, \\ $R_L \ge 2 \ k\Omega$, \\ $V_{OUT} = \pm 10V$ & 1000 & 3000 & 1000 & 3000 & 250 & 3000 \\ \hline \hline \\ Common-Mode & $T_A = 25^{\circ}C$, \\ $R_S = 50^{\circ}K$, \\ $R_S = 50^{\circ}K$, \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.12.5 & ± 13.5 & ± 12 & ± 13.5 & ± 12 & ± 13.5 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & ± 12.5 & ± 13.5 & ± 12 & ± 13.5 & ± 12 & ± 13.5 \\ \hline \\ R_L \ge 2^{\circ}K\Omega$ & ± 12.0 & ± 13.5 & ± 10 & ± 13.5 & ± 10 & ± 13.5 \\ \hline \\ Power Consumption & $T_A = 25^{\circ}C$ & 80 & 105 & 80 & 105 & 80 & 150 \\ \hline \\ Input Offset Voltage & $R_S \le 10^{\circ}K\Omega$ & 0.7 & 1.5 & 3.5 \\ \hline \\ Voltage Drift & 2.0 & 2.0 & 5.0 & 2.0 \\ \hline \\ Voltage Drift & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ With External Trim) & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ Voltage Drift & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ Voltage Drift & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ Voltage Drift & 0.6 & 1.2 & 20 & 1.2 & 35 \\ \hline \\ T_A = T_{MIN} & 7.5 & 18.0 & 7.5 & 40 & 4.0 & 50 \\ \hline \\ Average Input Offset & 35 & 90 & 35 & 150 & 10 \\ \hline \\ Current Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline $	Input Resistance			1.5			1.5			1.5		ΜΩ
$ \begin{array}{ c c c c c c c } \hline Large Signal Voltage Gain & $T_A = 25^{\circ}C$, \\ $R_L \ge 2 \ k\Omega$, \\ $V_{OUT} = \pm 10V$ & 1000 & 3000 & 1000 & 3000 & 250 & 3000 \\ \hline \hline \\ Common-Mode & $T_A = 25^{\circ}C$, \\ $R_S = 50^{\circ}K$, \\ $R_S = 50^{\circ}K$, \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.0 & 5.0 & 2.0 & 10 & 2.0 & 35 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & 2.12.5 & ± 13.5 & ± 12 & ± 13.5 & ± 12 & ± 13.5 \\ \hline \\ Rejection Ratio & $R_S \le 10^{\circ}K\Omega$ & ± 12.5 & ± 13.5 & ± 12 & ± 13.5 & ± 12 & ± 13.5 \\ \hline \\ R_L \ge 2^{\circ}K\Omega$ & ± 12.0 & ± 13.5 & ± 10 & ± 13.5 & ± 10 & ± 13.5 \\ \hline \\ Power Consumption & $T_A = 25^{\circ}C$ & 80 & 105 & 80 & 105 & 80 & 150 \\ \hline \\ Input Offset Voltage & $R_S \le 10^{\circ}K\Omega$ & 0.7 & 1.5 & 3.5 \\ \hline \\ Voltage Drift & 2.0 & 2.0 & 5.0 & 2.0 \\ \hline \\ Voltage Drift & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ With External Trim) & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ Voltage Drift & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ Voltage Drift & 0.6 & 1.0 & 0.6 & 0.6 \\ \hline \\ Voltage Drift & 0.6 & 1.2 & 20 & 1.2 & 35 \\ \hline \\ T_A = T_{MIN} & 7.5 & 18.0 & 7.5 & 40 & 4.0 & 50 \\ \hline \\ Average Input Offset & 35 & 90 & 35 & 150 & 10 \\ \hline \\ Current Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline \\ Voltage Drift & 0.0 & 0.0 & 0.0 \\ \hline $	Input Voltage Range	$T_A = 25^{\circ}C$	±13.5	±14		±13.5	±14		±13.5	±14		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Large Signal Voltage Gain	 										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1000	3000		1000	3000		250	3000		V/mV
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Common-Mode	T _A = 25°C,	120			110	120		94	120		dB
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Rejection Ratio											
$\begin{array}{ c c c c c c c c c }\hline Output Voltage Swing & T_A = 25^{\circ}C, \\ R_L \geq 10 \ k\Omega & \pm 12.5 & \pm 13.5 & \pm 12 & \pm 13.5 \\ R_L \geq 2 \ k\Omega & \pm 12.0 & \pm 13.5 & \pm 10 & \pm 13.5 & \pm 10 & \pm 13.5 \\\hline Power Consumption & T_A = 25^{\circ}C & 80 & 105 & 80 & 105 & 80 & 150 \\\hline Input Offset Voltage & R_S \leq 10 \ k\Omega & 0.7 & 1.5 & 3.5 \\\hline (Without External Trim) & 2.0 & 2.0 & 5.0 & 2.0 \\\hline Voltage Drift & 2.0 & 2.0 & 5.0 & 2.0 \\\hline (Without External Trim) & 0.6 & 1.0 & 0.6 & 0.6 \\\hline Voltage Drift & 0.6 & 1.0 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 1.2 & 20 & 1.2 & 35 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline Average Input Offset & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline Average Input Offset & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0.6 \\\hline (With External Trim) & 0.6 & 0.6 & 0$	Power Supply	$T_A = 25^{\circ}C$,		2.0	5.0		2.0	10		2.0	35	μV/V
$\begin{array}{ c c c c c c c c c }\hline Output Voltage Swing & T_A = 25^{\circ}C, \\ R_L \geq 10 \ k\Omega & \pm 12.5 & \pm 13.5 & \pm 12 & \pm 13.5 \\ R_L \geq 2 \ k\Omega & \pm 12.0 & \pm 13.5 & \pm 10 & \pm 13.5 & \pm 10 & \pm 13.5 \\\hline Power Consumption & T_A = 25^{\circ}C & 80 & 105 & 80 & 105 & 80 & 150 \\\hline Input Offset Voltage & R_S \leq 10 \ k\Omega & 0.7 & 1.5 & 3.5 \\\hline (Without External Trim) & & & & & & & & & & & & & & & & & & &$	Rejection Ratio	$R_S \le 10 \text{ k}\Omega$										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output Voltage Swing											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_L \ge 10 \text{ k}\Omega$	±12.5	±13.5		±12	±13.5		±12	±13.5		V
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$R_L \ge 2 k\Omega$	±12.0	±13.5		±10	±13.5		±10	±13.5		V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Power Consumption	$T_A = 25^{\circ}C$		80	105		80	105		80	150	mW
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Input Offset Voltage	$R_S \le 10 \text{ k}\Omega$			0.7			1.5			3.5	mV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Without External Trim)											
	Average Input Offset	$R_S = 50\Omega$										
	Voltage Drift				2.0		2.0	5.0		2.0		μV/°C
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(Without External Trim)											
	Average Input Offset	$R_S = 50\Omega$										
	Voltage Drift			0.6	1.0		0.6			0.6		μV/°C
												-
	Input Offset Current	$T_A = T_{MAX}$		1.2	4.0		1.2	20		1.2	35	nA
Average Input Offset 35 90 35 150 10 Current Drift												nA
Current Drift	Average Input Offset							150				pA/°C
	= :											
mpar bias sansin 14 - 1MAX 20 /0 20 100 123	Input Bias Current	$T_A = T_{MAX}$		20	70		20	100			125	nA
T _A = T _{MIN} 80 180 80 200 250	•						80					nA

www.national.com 2

Electrical Characteristics (Note 4) (Continued)

		LM725A		LM725		LM725C		
Parameter	Conditions	Min	Тур Мах	Min	Тур Мах	Min	Тур М	ux Units
Large Signal Voltage Gain	$R_L \ge 2 \text{ k}\Omega$							
	$T_A = T_{MAX}$	1,000,000		1,000,000		125,000		V/V
	$R_L \ge 2 k\Omega$							
	$T_A = T_{MIN}$	500,000		250,000		125,000		V/V
Common-Mode	$R_S \le 10 \text{ k}\Omega$	110		100			115	dB
Rejection Ratio								
Power Supply	$R_S \le 10 \text{ k}\Omega$		8.0		20		20	μV/V
Rejection Ratio								
Output Voltage Swing	$R_L \ge 2 \ k\Omega$	±12		±10		±10		V

Note 1: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits.

- Note 2: Derate at 150°C/W for operation at ambient temperatures above 75°C.
- $\textbf{Note 3:} \ \ \text{For supply voltages less than ± 22V}, \ \text{the absolute maximum input voltage is equal to the supply voltage}.$
- Note 4: These specifications apply for $V_S = \pm 15V$ unless otherwise specified.
- Note 5: For Military electrical specifications RETS725AX are available for LM725AH and RETS725X are available for LM725H.

Schematic Diagram

Typical Performance Characteristics

Voltage Gain vs Temperature for Supply Voltages

Untrimmed Input Offset Voltage vs Temperature

Input Bias Current vs Temperature

Change in Trimmed Input Offset Voltage vs Temperature

Input Offset Current vs Temperature

Stabilization Time of Input Offset Voltage from Power Turn-On

TIME FROM POWER APPLICATION - MIN 01047420

Typical Performance Characteristics (Continued)

Change in Input Offset Voltage Due to Thermal Shock vs Time

Input Noise Current vs Frequency

Open Loop Frequency Response for Values of Compensation (Note 6)

Input Noise Voltage vs Frequency

Power Consumption vs Temperature

Values for Suggested Compensation Networks vs Various Close Loop Voltage Gains

01047426

Typical Performance Characteristics (Continued)

Frequency Response for Various Close Loop Gain (Note 6)

Output Voltage Swing vs Frequency (Note 6)

Transient Response

Note 6: Performance is shown using recommended compensation networks.

Transient Response Test Circuit

www.national.com

Auxiliary Circuits

Voltage Offset Null Circuit

Frequency Compensation Circuit

01047404

Compensation Component Values

A _V	R ₁	C ₁	R ₂	C ₂	
	(Ω)	(μ F)	(Ω)	C ₂ (µF)	
10,000	10k	50 pF			
1,000	470	0.001			
100	47	0.01			
10	27	0.05	270	0.0015	
1	10	0.05	39	0.02	

Typical Applications

Photodiode Amplifier

DC Gains = 10,000; 1,000; 100; and 10
Bandwidth = Determined by value of C1

Thermocouple Amplifier

$$\begin{aligned} \frac{R2}{R5} &= \frac{R6}{R7} \text{ for best CMR} \\ R1 &= R4 \\ R2 &= R5 \\ Gain &= \frac{R6}{R2} + \left(\frac{2R1}{R3}\right) \\ DC &= 1000 \end{aligned}$$

Bandwidth = DC to 540 Hz Equivalent Input Noise = 0.24 μV_{rms}

Note: Indicates $\pm 1\%$ metal film resistors recommended for temperature stability.

Typical Applications (Continued)

±100V Common Mode Range Differential Amplifier

Typical Applications (Continued)

Instrumentation Amplifier with High **Common Mode Rejection**

$$\frac{R1}{R6} = \frac{R3}{R4} \text{ for best CMRR}$$

$$R3 = R4$$

$$R1 = R6 = 10 R3$$

$$Gain = \frac{R6}{R7}$$

Precision Amplifier $A_{VCL} = 1000$

www.national.com 10

Physical Dimensions inches (millimeters) unless otherwise noted

Order Number LM725H/883, LM725CH or LM725AH/883 **NS Package Number H08C**

Order Number LM725CN NS Package Number N08E

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560 This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

LM725 MW8 - http://www.ti.com/product/lm725 mw8?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM725 MD8 - http://www.ti.com/product/lm725 md8?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM725AH/883 - http://www.ti.com/product/lm725ah/883?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM725H/883 - http://www.ti.com/product/lm725h/883?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM725CN - http://www.ti.com/product/lm725cn?HQS=TI-null-null-dscatalog-df-pf-null-wwe LM725CH - http://www.ti.com/product/lm725ch?HQS=TI-null-null-dscatalog-df-pf-null-wwe