STGD5NB120SZ ## 5 A - 1200 V - low drop internally clamped IGBT #### **Features** - Low on-voltage drop (V_{CE(sat)}) - High current capability - Off losses include tail current - High voltage clamping #### **Applications** - Light dimmer - Inrush current limitation - Pre-heating for electronic lamp ballast #### **Description** This IGBT utilizes the advanced Power MESH™ process resulting in an excellent trade-off between switching performance and low on-state behavior. Figure 1. Internal schematic diagram Table 1. Device summary | Order codes | Marking | Package | Packaging | |----------------|------------|---------|---------------| | STGD5NB120SZ-1 | GD5NB120SZ | IPAK | Tube | | STGD5NB120SZT4 | GD5NB120SZ | DPAK | Tape and reel | Contents STGD5NB120SZ ## **Contents** | 1 | Electrical ratings | 3 | |---|----------------------------|------| | 2 | Electrical characteristics | | | 3 | Test circuit | 9 | | 4 | Package mechanical data | . 10 | | 5 | Packaging mechanical data | . 13 | | 6 | Revision history | . 14 | STGD5NB120SZ Electrical ratings ## 1 Electrical ratings Table 2. Absolute maximum ratings | Symbol | Parameter | Value | Unit | |--------------------------------|---|-------------|------| | V _{CES} | Collector-emitter voltage (V _{GE} = 0) | 1200 | ٧ | | I _C ⁽¹⁾ | Collector current (continuous) at T _C = 25 °C | 10 | Α | | I _C ⁽¹⁾ | Collector current (continuous) at T _C = 100 °C | 5 | Α | | I _{CP} ⁽²⁾ | Pulsed collector current | 10 | Α | | I _{CL} ⁽³⁾ | Turn-off latching current | 10 | Α | | V _{GE} | Gate-emitter voltage | ±20 | V | | V _{ECR} | Emitter-collector voltage | 20 | ٧ | | E _{AS} (4) | Single pulse avalanche energy at T _C = 25 °C | 10 | mJ | | L'AS ` | Single pulse avalanche energy at T _C = 100 °C | 7 | mJ | | P _{TOT} | Total dissipation at T _C = 25 °C | 75 | W | | T _j | Operating junction temperature | – 55 to 150 | °C | ^{1.} Calculated according to the iterative formula: $$I_{C}(T_{C}) = \frac{T_{j(max)} - T_{C}}{R_{thj-c} \times V_{CE(sat)(max)}(T_{j(max)}, I_{C}(T_{C}))}$$ - 2. Pulse width limited by max. temperature allowed - 3. V_{CLAMP} = 80% (V_{CES}), V_{GE} = 15 V, R_{G} = 10 Ω , T_{J} = 150 °C - 4. $V_{CE} = 50 \text{ V}$, $I_{AV} = 3.3 \text{ A}$ Table 3. Thermal resistance | Symbol Parameter | | Value | Unit | |-----------------------|---|-------|------| | R _{thj-case} | Thermal resistance junction-case IGBT max | 1.67 | °C/W | | R _{thj-amb} | Thermal resistance junction-ambient max | 100 | °C/W | Electrical characteristics STGD5NB120SZ ## 2 Electrical characteristics (T_{CASE}=25 $^{\circ}\text{C}$ unless otherwise specified) Table 4. Static electrical characteristics | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |----------------------|---|--|------|------------|-----------|--------------------------| | V _{(BR)CES} | Collector-emitter
breakdown voltage
(V _{GE} = 0) | I _C = 10 mA | 1200 | | | V | | V _{CE(sat)} | Collector-emitter saturation voltage | V _{GE} = 15 V, I _C = 5 A
V _{GE} = 15 V, I _C = 5 A,T _C = 125 °C | | 1.3
1.2 | 2.0 | V
V | | V _{GE(th)} | Gate threshold voltage | $V_{CE} = V_{GE}$, $I_{C} = 250 \mu A$ | 2 | | 5 | V | | V _{GE} | Gate emitter voltage | V_{CE} = 2.5 V, I_{C} = 2 A,
T_{C} = 25 ÷ 125 °C | | | 6.5 | V | | I _{CES} | Collector cut-off current (V _{GE} = 0) | V _{CE} = 900 V
V _{CE} = 900 VT _C = 125 °C | | | 50
250 | μ Α
μ Α | | I _{GES} | Gate-emitter leakage current (V _{CE} = 0) | V _{GE} = ±20 V | | | ±100 | nA | | 9 _{fs} | Forward transconductance | $V_{CE} = 15 V_{,} I_{C} = 5 A$ | | 5 | | S | | R_{G} | Gate resistance | | | 4 | | kΩ | Table 5. Dynamic electrical characteristics | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|---|------|----------------|------|----------------| | C _{ies} C _{oes} C _{res} | Input capacitance Output capacitance Reverse transfer capacitance | V _{CE} = 25 V, f = 1 MHz,
V _{GE} = 0 | | 430
40
7 | | pF
pF
pF | Table 6. Switching on/off (inductive load) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|---|------|--------------------------|------|----------------------| | t _{d(on)}
t _r
(di/dt) _{on} | Turn-on delay time
Current rise time
Turn-on current slope | V_{CC} = 960 V, I_{C} = 5A
R_{drive} = 1 k Ω , V_{GE} = 15 V,
(see Figure 18) | | 690
170
39.6 | | ns
ns
A/µs | | t _{d(on)} t _r (di/dt) _{on} | Turn-on delay time
Current rise time
Turn-on current slope | V_{CC} = 960 V, I_{C} = 5A
R_{drive} = 1 k Ω , V_{GE} = 15 V
T_{C} = 125 °C (see Figure 18) | | 600
185
39 | | ns
ns
A/µs | | $\begin{array}{c} t_{\rm c} \\ t_{\rm r}({\rm V}_{\rm off}) \\ t_{\rm d}(_{\rm off}) \\ t_{\rm f} \end{array}$ | Cross-over time Off voltage rise time Turn-off delay time Current fall time | V_{CC} = 960 V, I_{C} = 5A R_{drive} = 1 k Ω , V_{GE} = 15 V (see Figure 18) | | 4
2.2
12.1
1.13 | | μs
μs
μs
μs | | $\begin{array}{c} t_{\rm c} \\ t_{\rm r}({\rm V}_{\rm off}) \\ t_{\rm d}(_{\rm off}) \\ t_{\rm f} \end{array}$ | Cross-over time Off voltage rise time Turn-off delay time Current fall time | V_{CC} = 960 V, I_{C} = 5A
R_{drive} = 1 k Ω , V_{GE} = 15 V,
T_{C} = 125 °C (see Figure 18) | | 5
2.2
12.1
2 | | μs
μs
μs
μs | Table 7. Switching energy (inductive load) | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |--|---|---|------|-----------------------|------|----------------| | E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts} | Turn-on switching losses Turn-off switching losses Total switching losses | V_{CC} = 960 V, I_{C} = 5A
R_{drive} = 1 k Ω , V_{GE} = 15 V
(see Figure 18) | | 2.59
9
11.59 | | mJ
mJ
mJ | | E _{on} ⁽¹⁾ E _{off} ⁽²⁾ E _{ts} | Turn-on switching losses Turn-off switching losses Total switching losses | V_{CC} = 960 V, I_{C} = 5A
R_{drive} = 1 k Ω , V_{GE} = 15 V,
T_{C} = 125 °C (see Figure 18) | | 2.64
10.2
12.68 | | mJ
mJ
mJ | Eon is the turn-on losses when a typical diode is used in the test circuit in (see Figure 18). If the IGBT is offered in a package with a co-pak diode, the co-pack diode is used as external diode. IGBTs & Diode are at the same temperature (25°C and 125°C) Table 8. Functional test | Symbol | Parameter | Test conditions | Min. | Тур. | Max. | Unit | |-----------------|---------------------------------------|--|------|------|------|------| | I _{AS} | Unclamped inductive switching current | V_{CC} = 50 V, L = 1.8 mH
T_{start} = 25 °C, R_{drive} = 1 k Ω | 3.3 | | | Α | ^{2.} Turn-off losses include also the tail of the collector current Electrical characteristics STGD5NB120SZ ## 2.1 Electrical characteristics (curves) Figure 2. Output characteristics Figure 3. Transfer characteristics Figure 4. Transconductance Figure 5. Collector-emitter on voltage vs temperature Figure 6. Gate charge vs gate-source voltage Figure 7. Capacitance variations HV18630 HV18620 V_{GE}(th) VCE(SAT) $\bigvee_{CE} = \bigvee_{GE}$ (V) Ic=250µA 1.02 VGE=15V 2.2 0.98 1.8 TJ=150°C 0.96 1.4 -50°C 0.94 0.92 0.6 100 -5050 150 TJ(℃) 6 9 12 15 Ic(A) Figure 8. Normalized gate threshold voltage Figure 9. Collector-emitter on voltage vs vs temperature collector current Figure 10. Breakdown voltage vs temperature Figure 11. Normalized collector-emitter on voltage vs temperature Figure 12. Switching losses vs gate resistance Figure 13. Switching losses vs collector current Electrical characteristics STGD5NB120SZ Figure 14. Turn-off SOA Figure 15. Thermal impedance STGD5NB120SZ Test circuit ## 3 Test circuit Figure 16. Test circuit for inductive load switching Figure 17. Gate charge test circuit Figure 18. Switching waveform ## 4 Package mechanical data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com #### TO-252 (DPAK) mechanical data | DIM. | mm. | | | | |-------|------|------|-------|--| | DIWI. | min. | typ | max. | | | A | 2.20 | | 2.40 | | | A1 | 0.90 | | 1.10 | | | A2 | 0.03 | | 0.23 | | | b | 0.64 | | 0.90 | | | b4 | 5.20 | | 5.40 | | | С | 0.45 | | 0.60 | | | c2 | 0.48 | | 0.60 | | | D | 6.00 | | 6.20 | | | D1 | | 5.10 | | | | E | 6.40 | | 6.60 | | | E1 | | 4.70 | | | | е | | 2.28 | | | | e1 | 4.40 | | 4.60 | | | Н | 9.35 | | 10.10 | | | L | 1 | | | | | L1 | | 2.80 | | | | L2 | | 0.80 | | | | L4 | 0.60 | | 1 | | | R | | 0.20 | | | | V2 | 0 ° | | 8 ° | | | 10-231 (II AIX) IIICCIIailicai data | TO-251 | (IPAK) | mechanical | data | |-------------------------------------|--------|--------|------------|------| |-------------------------------------|--------|--------|------------|------| | DIM. | mm. | | | | |-------|------|-------|------|--| | DIWI. | min. | typ | max. | | | Α | 2.20 | | 2.40 | | | A1 | 0.90 | | 1.10 | | | b | 0.64 | | 0.90 | | | b2 | | | 0.95 | | | b4 | 5.20 | | 5.40 | | | С | 0.45 | | 0.60 | | | c2 | 0.48 | | 0.60 | | | D | 6.00 | | 6.20 | | | E | 6.40 | | 6.60 | | | е | | 2.28 | | | | e1 | 4.40 | | 4.60 | | | Н | | 16.10 | | | | L | 9.00 | | 9.40 | | | (L1) | 0.80 | | 1.20 | | | L2 | | 0.80 | | | | V1 | | 10 ° | | | #### 5 Packaging mechanical data #### **DPAK FOOTPRINT** #### **TAPE AND REEL SHIPMENT** Revision history STGD5NB120SZ # 6 Revision history Table 9. Document revision history | Date | Revision | Changes | |-------------|----------|---| | 06-Oct-2003 | 5 | No history because migration | | 18-Jan-2005 | 6 | Final datasheet | | 13-Nov-2008 | 7 | Insert new value in Table 2: Absolute maximum ratings | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2008 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com